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Recent interest in airbreathing hypersonic flight has centered around the need to develop
advanced space launch systems which can reduce the cost of inserting payloads in orbit and
make space more accessible. An effect of the thermal environment is to require the vehicle to
operate at high altitudes, in very thin air, to maintain aircraft structural load limits. The high
altitudes at which the hypersonic vehicle must operate give rise to the concept of an airframe
integrated propulsion system (Fig. 1) to provide a much larger inlet and nozzle to process the

required volume of air at low-density, atmospheric conditions. In the integrated system, the

forward portion of the vehicle compresses the airflow and serves as the eiternal portion of the

inlet; the aftbody completes the expansion process for the nozzle. In addition the engine, which
is contained between the body and the forebody shock wave, lends itself to a modular
integration of a number of separate engines. In this manner a relatively small engine can be
defined to allow engine development in existing ground facilities.

The large forebody and aftbody lead to unique problems associated with the hypersonic vehicle.
Figure 2 illustrates a poor forebody design in that the static pressure distribution ahead of the

propulsion modules results in a large accumulation of boundary layer in the center of the

forebody. Such an airflow distribution would cause an unacceptably thick boundary layer and
airflow loss in the center propulsion module. The importance of finite-rate chemistry at high

speeds in calculating lateral airflow distribution as well as flow-field profiles between the body
and cowl is also illustrated in this figure. The aftbody is unique in that a large portion of the
airframe surface becomes involved in producing thrust. Figure 3 is an example of tests that have

been conducted on a nozzle aftbody to determine performance characteristics. Parametric tests
included the nozzle sidewall fence and air or stimulant gas to represent the nozzle exhaust flow.

The stimulant gas was a cold mixture of gases intended to properly reproduce the engine

exhaust flow ratio of specific heats throughout the nozzle expansion process. Note that measure

nozzle forces are increased when the exhaust flow is simulated as compared to results using air.
In add/tion, increases in nozzle thrust and lift occur when a flow fence is instaJled since the

nozzle is not overexpanded and exhaust flow containment within the nozzle maximizes thrust at
higher speeds. In contrast, at transonic speeds a configuration without sidewalls would have less
base drag since the nozzle is overexpanded and outside air must be allowed to bleed into the

base region.

The wide Mach number range of operation required by an SSTO vehicle also imposes unique
challenges on the design and performance of the hypersonic engine module. Operation of both
the turbojet and ramjet cycles at the same time requires separate combustors and nozzles as
illustrated by Figure 4. Choking the two flows separately using independent operating nozzle
throats allows each flowpath to be backpressured separately. Possible advantages include

increased thrust and a smoother transition between the two cycles. More efficient methods for
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combining the turbojet and ramjet intakes have been explored, and have resulted in an
arrangement where the ramjet is located under the turbojet rather than having the ramjet
combustor wrapped around the turbojet engine (Figure 5). This concept results in a higher level
of integration between the turbojet and ramjet intakes. At high speeds when only the ramjet is

operating, the supersonic portion of the inlet is ident/cal between the two concepts (Fig.6),
whereas at low speeds a portion of the supersonic inlet opens to form an add/tional inlet for the

turbojet. More independence between the two engine cycles results, thereby allowing internal

ducting to be designed specifically for each cycle. A major advantage of the over/under
turboramjet arrangement is that the high speed cycle is no longer restr/cted to a ramjet, and may
include a dual-mode scramjet.

Contemporary dual-mode engines include the Parametric Engine tested at Langley Research
Center (Figure 7). This concept represents an airframe-integrated engine built around a
sidewall compression inlet approach. However tests have been expanded to include other
shapes such as the 2-D class of engines which may integrate better with the turbojet engine.
Tests so far have been conducted at a small scale, limited by facil/ty size, and have included only
limited forebody effects resulting from integration with the airframe. The 2.44 meter High
Temperature Tunnel at Langley has been recently modified to include propulsion testing in

add/tion to its usual role as a structures test facility (Figure 8). This large facility will allow
extensions of previous tests to include airframe integration and multiple module effects with the
engine size illustrated in Figure 7, as well as a larger scale engine to allow studies of engine
scale effects and to include realistic structure within the test module.
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